بهبود مدیریت درآمد در صنعت هتلداری با بهره‌گیری از شبکة عصبی مصنوعی در تعیین پارامتر احتمالی یک مدل رزرو مازاد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت، دانشکدة علوم اداری و اقتصاد، دانشگاه فردوسی مشهد

2 دانشجوی دکتری مدیریت تحقیق در عملیات، دانشکدة علوم اداری و اقتصاد، دانشگاه فردوسی مشهد

چکیده

بهره‌گیری از مدل‌های مدیریت درآمد در صنایع مختلف رو به افزایش است. این افزایش در بهبود عملکرد و سودآوری این مدل‌ها در کسب­و­کارها ریشه دارد. یکی از کسب­و­کارهای پراهمیت در این حوزه، صنعت هتلداری است که دارای فرایند رزرو و متغیرهای تصادفی ناشی از آن است. مدل کلاسیک رزرو مازاد، یک مدل مرسوم در مدیریت درآمد تلقی می‌شود که تلاش می‌کند بین تعداد مشتریان حاضر در سرویس مورد نظر و تعداد مشتریان غایب (No-Show) تعادل ایجاد کند. این مدل فرصتی ایجاد خواهد کرد تا بتوان با مطالعة توابعی که توزیع حضور مشتریان را به صورت احتمالی بیان می‌کنند، تعدادی مشتری مازاد را به سیستم اضافه کرد و عملاً از نبود مشتریان غایب نیز درآمد کسب کنند. در این پژوهش، با به کار بستن شبکة عصبی مصنوعی با عنوان ابزاری در تخمین تعداد مشتریان غایب، تابع احتمال دوجمله‌ای که در مدل رزرو مازاد به کار رفته، بهبود داده شده و پارامتر احتمالی آن به طور دقیق‌تری برآورد شده است. این امر ناشی از برازشی است که شبکة عصبی پرسپترون یک یا چندلایه در زمینة شاخص‌های مؤثر در حاضرشدن یا نشدن مشتریان ایجاد خواهدکرد. بنابراین، این توانایی ایجاد خواهد شد که مدلی پویا را برای هر بار فروش و رزرو مشتریان در بنگاه ایجاد کنیم که پارامتر احتمال حضور یا غیبت مشتریان با در نظر گرفتن شاخص‌های تأثیرگذار برآورده شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Improvement of Revenue Management in the Hoteling Industry using Neural Networks to Determine Stochastic Parameter in an Overbooking Model

نویسندگان [English]

  • Ahmad Tavakkoli 1
  • Mohammadali Faezirad 2
1 Assistant Professor, Faculty of Economic and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Ph.D. Student, Operational Research Management, Faculty of Economic and Administrative Sciences, Ferdowsi University of Mashhad, Iran
چکیده [English]

The use of revenue management models has been increased in various industries. The cause of such increasing is as a result of performance and profitability of these models in businesses. Hoteling industry is considered as an important business in the field of revenue management that has a reservation process and stochastic variables due to it. Classic overbooking model is considered as a common model in revenue management that causes to make a trade-off between the number of present customers and no-show customers. This model makes a situation for studying the functions which describe costumers’ presence distribution in probable form and then we can add some customers to system for increasing revenue due to no-shows. In this research, the binomial probability distribution using in overbooking model has been improved and estimated its probable parameter more accurately using artificial neural network as a tool in no-show estimation. This estimation is caused by fitting to effective indexes in show-up or no-show process using one-layer or multi-layer perceptron neural network. Therefore, a dynamic model for each sale and customers’ reservation is represented that it can estimate the probability parameter of customers’ show-up or no-show considering effective indexes.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Hoteling Industry
  • Overbooking Model
  • Revenue Management

1-   اعتباری، فرهاد و آقایی، عبداله (۱۳۹۱). «قیمت‌گذاری پویای پروازهای موازی با در نظر گرفتن رفتار انتخابی مشتری». پژوهشنامة حمل و نقل، ۹ (۲)، ۱۱۷-۱۳۵.

2-   پورسیدآقایی، محسن؛ خدمتلو، سعید و آزرمی، سیاوش (1388). «طراحی مدل مدیریت درآمد در شرکتهای حمل و نقل عمومی: موردکاوی قطار غزال تهران مشهد». نشریة مهندسی صنایع، ۴۳(۱)، ۱-۱۱.

3-   رحمانی، علی و اسماعیلی، غریبه (1389). «کارایی شبکه­های عصبی، رگرسیون لجستیک و تحلیل تمایزی در پیش­بینی نکول». اقتصاد مقداری، 7(4)، 151-172.

4-   کتابی، سعیده؛ قندهاری، مهسا و احمدی، مسعود (1393).     «بهینه­سازی درآمد هتل در حالت وجود تقاضای قطعی و غیرقطعی با در نظر گرفتن لغو درخواست و عدم حضور میهمان». مدیریت تولید و عملیات، 9(2)، 129 - 144.

5-   مدرس، محمد و نجفی، مهدی (1388). «برنامه‌ریزی تصادفی بهینه‌سازی پایدار درآمد هتل». نشریة بین‌المللی مهندسی صنایع و مدیریت تولید، 4(20): 11-21.

6-      Adhikari, R. (2015). A neural network based linear ensemble framework for time series forecasting. Neurocomputing, 157: 231-242.

7-      Amaruchkul, K. & Sae-Lim, P. (2011). Airline overbooking models with misspecification. Journal of Air Transport Management 17, 143-147

8-      Ballestero, P.T. & Serrano, L.G. (2012). Yield Revenue Management in the Hotel Sector: An Empirical Analysis of Its Application and Results in Madrid, Spain (Chapter). Quantitative Methods in Tourism Economics: 213-231.

9-      Cullen , K & Helsel, C. (2006), Defining Revenue Management Top Line to Bottom Line, HSMAI.

10-  El-Sharo, M., Zheng, B., Yoon, S.W. & Khasawneh, M.T (2015). An overbooking scheduling model for outpatient appointments in a multi-provider clinic. Operations Research for Health Care, 6, 1-10.

11-  Emeksiz, M., Gursoy, D. & Icoz, O. (2005). A yield management model for five-starhotels:Computerized and n-computerized implementation. International Journal of Hospitality Management, 25(4): 536-551.

12-  Freisleben, B. and Gleichmann, G. (1993). Controlling airline seat allocations with neural networks. Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

13-  Georgiadis, G. & Tang, C.S. (2014). Optimal reservation policies and market segmentation. Int. J. Production Economics 154, 81–99

14-  Guadix, J., Cortés, P., Onieva, L. & Muñuzuri, J. (2010). Technology revenue management system for customer groups in hotels. Journal of Business Research, 63(5), 519-527.

15-  Harewood, S.I. (2006). Managing a hotel’s perishable inventory using bid prices. International Journal of Operations & Production Management, 26(10): 1108-1122.

16-  Hillier, F. S. & Lieberman, G. J. (2015). Introduction to Operations Research (Tenth Edition). New York: McGraw-Hill Education.

17-  Iyengar, A. & Suri, K. (2012). Customer profitability analysis an avant-garde approach to revenue optimisation in hotels. International Journal of Revenue Management, 6(1/2): 127-143.

18-  Kim, H.S., Eykholt, R., Salas, J.D. (1999). Nonlinear dynamics, delay times and embedding windows. Physica D: Nonlinear Phenomena, 127(1-2): 48-60.

19-  Kimes S. A strategic approach to yield management. In: Ingold A, McMahon-Beattie U, Yeoman I, editors. Yield Management: Strategies for the service industries. London: Continuum; 2000. p. 3–14.

20-  Koide, T. and Ishii, H. (2005). The hotel yield management with two types of room prices, overbooking and cancellations. International Journal of Production Economics, 93-94: 417-428.

21-  Lai, K.K. & Ng, W.L. (2005). A stochastic aroach to hotel revenue optimization. Computers and Operations Research, 32(1): 1059-1072.

22-  Li, M.M. & Verma, B. (2016). Nonlinear curve fitting to stopping power data using RBF neural networks. Expert Systems With Applications 45, 161-171.

23-  Luo, S., Çakanyıldırım, M. & Kasilingam, R.G. (2009) .Two-dimensional cargo overbooking models. European Journal of Operational Research 197(3), 862-883.

24-  Noone, B.M. & Mattila, A. (2009). Hotel revenue management and the Internet: The effect of price presentation strategies on customers willingness to book. International Journal of Hospitality Management, 28(2): 272-279.

25-  Rothstein, M. (1971). An Airline Overbooking Model. Transportation Science, 9(2), 180-192.

26-  Rothstein, M. (1974). Hotel Overbooking as a Markovian Sequential Decision Process. Decision Science, 5, 389-404.

27-  Sieraga, D.D., Koole, G.M., van der Meia, R.D., van der Rest, J.I. & Zwart, B. (2015). Revenue management under customer choice behaviour with cancellations and overbooking. European Journal of Operational Research, 246(1): 170–185.

28-  Sun X. S., Brauner E. and Hormby S. (1998) A Large-Scale Neural Network for Airline Forecasting in Revenue Management. In: Yu G. (eds) Operations Research in the Airline Industry. International Series in Operations Research & Management Science, 9. Boston: Springer.

29-  Talluri, G. & Van Ryzin, K. (2004). Theory and Practice of Yield Management. Boston: Kluwer Academic Publishers (now Springer).

30-  Tsai, L. (2009). Customer churn prediction by hybrid neural networks. Expert Systems with Applications, 36: 12547-12553.

31-  Tsai, T-H., Lee, C-K. and Wei, C-H. (2009). Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Systems with Applications, 36(2), 3728-3736.

32-  Weatherford, L. R. and Kimes, S. E. (2003) A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting, 19(3), 401–415.

33-  Wirtz. J., Kime, S., Theng, J.H.P. & Patterson, P. (2003). Revenue Management: Resolving potential customer conflicts. Journal of Revenue and Pricing Management, 2(3): 216–226.

34-  Zhang, Y. (2007). The Theoretical Research Summary of Hotel Room Pricing Method. Tourism Tribune, 3(1): 40-58.