تحلیل ریسک توسعه محصول جدید (NPD) با استفاده از شبکه‌های بیز (BNs)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استایار گروه مدیریت دانشگاه گیلان

2 کارشناس ارشد مدیریت صنعتی دانشگاه گیلان

3 کارشناس ارشد مهندسی صنایع دانشگاه بوعلی سینا همدان

چکیده

  متغیر بودن قوانین رقابتی در دنیای کسب و کار، فرایند ارائه محصول جدید به بازار را با اهمیت خاصی جلوه داده است. رشد سریع تکنولوژی، افزایش ریسک‌پذیری و مخاطره در بازارهای جهانی و تغییرات روز‌افزون در نیازهای مشتریان، تیم‌های توسعه محصول جدید را با فشارهای روز‌افزونی مواجه ساخته است. با این حال، فرایند توسعه محصول جدید همواره با حد بالایی از عدم اطمینان و پیچیدگی همراه است. به منظور موفقیت در انجام پروژه NPD، ریسک‌های موجود در این فرایند باید شناسایی شده و مورد بررسی قرار گیرند. از طرفی، شبکه‌های بیز به عنوان یک روش قوی در مدلسازی تصمیمگیری در شرایط عدم اطمینان در حوزههای مختلف، توجه زیادی را به خود جلب نموده‌اند. شبکه‌های بیز برای بسیاری از مسائل همراه با عدم قطعیت و استدلال احتمالی یک سیستم پشتیبانی تصمیم فرآهم می‌آورند. در این مقاله، ابتدا فاکتورهای ریسک موجود در توسعه محصول جدید در یک شرکت تولید لوازم الکتریکی شناسایی شده و سپس با استفاده از شبکه‌های بیز روابط بین آنها مدل‌سازی شده تا ریسک موجود در این فرایند مورد ارزیابی قرار گیرد. برای تعیین احتمالات اولیه و شرطی گره‌ها از نظر کارشناسان و خبرگان این حوزه استفاده شده است. ریسک‌های موجود در این فرایند به سه دسته بالا، متوسط و پایین دسته‌بندی شده است و در نرم‌افزار AgenaRisk مورد بررسی قرار گرفته است. نتایج حاصل از خروجی نرم‌افزار نشان می‌دهد که تولید محصول مورد نظر از ریسک نسبتا بالایی برخوردار است. علاوه بر این، استنتاج پیش‌بینی و استنتاج تشخیصی با دو سناریوی مختلف بر روی مدل اعمال شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Risk Analysis of New Product Development Using Bayesian Networks

نویسندگان [English]

  • MohammadRahim Ramezanian 1
  • Abolghasem Nasir 2
  • Abdollah Abdi 3
1 Assistant Professor, Department of Management, University of Guilan
2 M.A. of Industrial Management, University of Guilan
3 M.S. of Industrial Engineering, Hamedan Booali Sina University
چکیده [English]

The process of presenting new product development (NPD) to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H), Medium (M) and Low (L) groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.

کلیدواژه‌ها [English]

  • New Product Development (NPD)
  • Risk
  • Bayesian networks (BNs)

1-   Al-Harbi, K. B. A. (2001). Application of the AHP in project management. International Journal of Project Management, 19, 19–27.

2-   Ahn, B. S., & Choi, S. H. (2008). ERP system selection using a simulation-based AHP approach: A case of Korean home shopping company. Journal of the Operational Research Society, 59, 322–330.

3-   Blundell, R., Griffith, R. and v. Reenen, J. (1999). Market share, market value and innovation in a panel of British manufacturing firms. Review of Economic Studies, 66, 529–554.

4-   Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost and schedule risk in product development. IEEE Transactions on Engineering Management, 49(4), 428–442.

5-   Cheng, C. J., & Liao, S. L. (2007). Congruence/incongruence perception of product strategy and business performance: By contrasting organizations and consumers from Taiwanese telecommunications industry. Journal of American Academy of Business, 10(2), 275–281.

6-   Chiang, T. A., &  Che, Z. H. (2010). A fuzzy robust evaluation model for selecting and ranking NPD projects using Bayesian belief network and weight-restricted DEA. Expert Systems with Applications, 37, 7408–7418.

7-   Chin, K. S., & Tang, D. W., & Yang, J. B., & Wong, S. Y., & Wang, H. (2009). Assessing new product development project risk by Bayesian network with a systematic probability generation methodology. Expert Systems with Applications, 36, 9879 –9890.

8-   Choi, H. G., & Ahn, J. (2010). Risk analysis models and risk degree determination in new product development: A case study. Journal of Engineering and Technology Management, 27, 110–124.

9-   Cooper, L. P. (2003). A research agenda to reduce risk in new product development through knowledge management: a practitioner perspective. Journal of Engineering and

10-        Technology Management, 20, 117–140.

11-        Eilat, H., Golany, B., & Shtub, A. (2006). Constructing and evaluating balanced portfolios of R&D projects with interactions: A DEA based methodology. European Journal of Operational Research, 172(3), 1018–1039.

12-        Druzdzel, M.J., van der Gaag, L.C. (1995). Elicitation of probabilities for belief networks: combining qualitative and quantitative information, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 141–148.

13-        Ferreira, V. V & Ogliary, A. (2004). Guidelines for the systematization of the process of development planning products with a focus on interfaces and risks. III National Congress Mechanical Engineering PA - Brazil.

14-        Feyziogglu, O., & Buyukozkan, G. (2006). Evaluation of new product development projects using artificial intelligence and fuzzy logic. In International conference on knowledge mining and computer science Prague, Czeck Republic, 11, 183–189.

15-        Goodwin, S. A. (2009). The Concept and Measurement of Perceived Risk: A Marketing Application in the Context of the New Product Development Process. ASBBS Annual Conference: Las Vegas, 16(1).

16-        Jensen, F. V. (1996), An Introduction to Bayesian Networks, Springer-Verlag, New York.

17-        Kayis, B., Arndt, G., Zhou, M., Amornsawadwatana, S. (2007). A Risk Mitigation Methodology for New Product and Process Design in Concurrent Engineering Projects. Annals of the CIRP, 56(1).

18-        Langerak, F., & Hultink, E. J. (2005). The impact of new product development acceleration approaches on speed and profitability: Lessons for pioneers and fast followers. IEEE Transactions on Engineering Management, 52(1), 30–42.

19-        Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research, 27, 367–382.

20-        Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., & Zaeri, M. S. (2007). Project selection by using fuzzy AHP and TOPSIS technique. International Journal of Human and Social Sciences, 1(3), 135–140.

21-        Meade, L. M., & Preslley, A. (2002). R&D project selection using the analytic network process. IEEE Transactions on Engineering Management, 49(1), 59–66.

22-        Pearl, J. (1988). Probabilistic reasoning in Intelligence Systems: Networks of Plausible Inference. Morgan Kaufman Publishers, San Mateo.

23-        Sherman, J. D., Berkowitz, D. & Souder, W. E. (2005) New product development performance and the interaction of cross-functional integration and knowledge management. Journal of Product Innovation Management, 22, 399-411.

24-        Smith, P. G. & Merritt, G. M. (2002) – Proactive Risk Management: Controlling Uncertainty in Product Development.New York: Productivity Press.

25-        Sowlati, T., Paradi, J. C., & Suld, C. (2005). Information systems project prioritization using data envelopment analysis. Mathematical and Computer Modelling, 41, 1279–1298.

26-        Tang, D., & Yang, J. B., & Chin, K. S., & Wonga,  Z. S. Y., & Liu, X. (2011). A methodology to generate a belief rule base for customer perception risk analysis in new product development. Expert Systems with Applications, 38, 5373–5383.

27-        Ulrich, K. T. & Eppinger, S. D. (2004) Product design and development . Third Edition. New York, McGraw-Hill.

28-        Wang, J. J., Jing, Y. Y., Zhang, C. F., Shi, G. H., & Zhang, X. T. (2008). A fuzzy multicriteria decision making model for trigeneration system. Energy Policy, 36, 3823–3832.

29-        Wang, J., & Lin, Y. I. (2009).  An overlapping process model to assess schedule risk for new product development. Computers & Industrial Engineering, 57, 460–474.

30-        Weber, P., & Medina-Oliva, G., & Simon, C., & Iung, B. (2010). Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 32, 147-158.

31-        Wei, C.C., Chang, H.W. (2011). A new approach for selecting portfolio of new product development projects. Expert Systems with Applications 38, 429–434.